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STUDIES OF HUMAN LOCOMOTION VIA OPTIMAL PROGRAMMING ' 

By 

C    K.  Chow and D.   H.   Jacobson 

Division of Engineering and Applied Physics 

Harvard University Cambridge,  Massachusetts 

ABSTRACT 

Research to-date towards an understanding of human biped 

locomotion has been primarily experimental in nature,   largely due to 

the complexity of the process.    In view of the new,   exciting possibilities 

of programmed electro-stimulation of paralyzed extremities to restore 

locomotion,  a critical study at the theoretical level is greatly warranted. 

Optimal programming and modern control theory offer a new approach 

to the study.     First,   it is proposed that normal walking obeys a 

certain "principle of optimality".     Next,   at the dynamic level,   modern 

control theory is used to derive the optimal moment profiles which 

actuate the locomotor elements to synthesize the observed patterns of 

the normal gait. 

Development of the problem structure relies closely on the func- 

tional characteristics of the biped gait,   particularly the ideas of distinct 

phasic activities and the associated temporal patterns of a walking cycle. 

The result is a multi-arc programming problem with three stages. 

Each stage involves dynamic constraints which reflect the particular 

nature of the phasic activity.    Activity in the  stance phase is described 

{ This work is partially supported by the Joint Services Electronics 
Program under Contract No.   N00014-67-A-0298-0006. 
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by equality constraints on the   "states" while the swing phase is charac- 

terized by inequality state constraints.    A novelty of the approach is 

that the theory could be used to study walking behavior under different 

environmental conditions,   such as walking up-stairs or over a hole. 

Joining of the arcs is arranged in such a way as to maintain continuity 

of certain trajectories as well as repeatability of motion. 

A distinct feature of the present approach which differs from 

other studies is the presence of a minimizing performance criterion. 

Based on external characteristics of muscles and certain assumptions 

regarding normal locomotion,   a simple quadratic type of performance 

index is proposed.    This performance criterion is meaningful in that it 

is shown to be proportional to the mechanical work done during normal 

walking. 

Invoking the necessary conditions of optimal control theory,   a 

multi-point boundary value problem is obtained.    A penalty function 

technique is then employed for iterative numerical solution on a 

digital computer.     Using the parameters available in the literature, 

simulation results are obtained which agree well with the experimental 

studies performed by Eberhart and his associates.     Furthermore, 

certain refined features are obtained which are not available in 

previous studies.    Success in applying optimal programming techniques 

to human locomotion could yield better design procedures for prostheses 

and could allow eventual realization of the dream of programmed 

stimulation of many paralyzed persons. 
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A.     Preliminary Considerations 

1.     Motivation. 

Human locomotion displays a high degree of complexity,   organi- 

zation,   and efficiency.     The versatility and  "gracefulness" of the motion 

has fascinated man for a long time.     According to Bernstein [1], 

Leonardo da Vinci was probably the first to make scientific observations 

about human locomotion although real quantitative studies are only of 

recent vintage.     In addition to scientific curiosity,   the phylogenetic 

development of the biped gait from the push-pull mechanism of the 

quadruped is also of interest to the physical anthropologist.     How much 

better is a biped adapted to its living patterns than,   say,   its quadruped 

counterpart        To answer this question adequately,   one has to explore 

the functional characteristics of the biped gait. 

An important,   practical goal of locomotion study is a better 

design of prostheses for disabled persons.     In this and other areas 

dealing with human limbs and their substitutes,  a common consensus is 

that the end products should duplicate the performance of their normal 

human counterparts as closely as possible.     Thus,   quantitative 

knowledge of the normal biped gait serves as a common denominator 

for performance evaluation and improvement of the various innovations. 

The modern study of human locomotion began in the  1930's and 

has drawn greater attention since then.    Significant contributions during 

this time include the works of Fenn [2, 3],   Steindler [4],   Elftman [5-8], 

Liberson [9],   Wilson [10],   Close [11],   and the Eberhart-Inman group at 

Berkeley [12, 13].     Largely due to the complexity of the  subject,   results 

obtained so far have been experimental in nature.     However,   in view of 



the recent exciting possibilities of restoring the locomotion ability of 

certain paralyzed limbs through programmed electro-stimulation  [14- 

20],   a critical study of biped locomotion at the theoretical level is 

greatly warranted.    After all,   the very fundamental question of " what 

is the basic mechanism of locomotion?" or  "what are the laws 

governing locomotion?" cannot be answered in its completeness by 

experimental study.    A theory which attempts to embody the known 

facts about the human gait would be an important step in this field. 

Research activities to-date appear to fall into two broad areas. 

The first area is concerned with the functional structure and operational 

behavior of the locomotor system and its gait.     The second studies 

energy expenditure,   oxygen consumption and metabolism in general 

associated with walking.     These two areas describe the important 

aspects of a very complicated process.     With the tools of modern 

control theory,   it appears    possible to weld these two areas into a 

"functional" theory of human locomotion.    Such a study leads to quanti- 

tative investigation and useful design procedures for prosthetic devices. 

To this end,   the relevant physiological information and gait features 

are  summarized.     This,   then,   sets up the framework of our theoretical 

study. 

2.     Quantitative Features of the Biped Gait 

a.     Physiological Factors [21] 

Locomotion activity and other voluntary efforts usually involve 

decision and supervision by the  "higher centers" in the brain.     Fig.   1 

illustrates a typical skeletal muscle and its neural pathways.     The skel- 

etal muscle is the    actuating unit for all locomotion activities.     The 

a -motor input along the spinal cord represents a direct input from the 
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higher centers to the muscle by which the desired action can be initiated. 

It is believed that the a -motor input is the signal used for voluntary 

actions.    A voluntary action exists in the conscious thought in terms of a 

functional rather than a specific description.     "Lower" in the brain,  the 

concept of "voluntary actions" is translated into a programmed sequence 

of individual muscle actions,   based on the person's experience in the 

past in performing the task.     The  "activation" signal travels along the 

a -motor pathway.    A muscle spindle receptor is shown inserted in a 

parallel position to the skeletal muscle.     This is a transducer device 

which measures the length of the muscle and its sensitivity is adjusted 

by the upper y-motor neuron.    Results of the measurement are fed 

back to the thick lower a -motor neuron at the synapse where further 

integration of activity is taken.     Thus the upper a -motor neuron as 

well as the peripheral sensory neuron of the muscle receptor control 

the lower a -motor neuron and subsequent muscular activity. 

The simple picture of neural muscular action can be shown 

functionally in a block diagram in Fig.   2.     The present study is pri- 

marily concerned with the various mechanical moments which actuate 

the locomotor system and the resulting gait patterns it produces.     By 

knowing the moment histories,   one can then concentrate on the neural- 

muscular transformation (E.M.G.   activity and the like) for the 

electrical patterns of activity and eventually the neural action.     This 

amounts to working outwards from the inner-most loop rather than 

studying the entire system in aggregate. 



b.     The Compass Gait [9, 22] 

Under the action of the actuating moments,   the motion of the 

iocomotor system produces the patterns of the biped gait which can be 

studied experimentally to various degrees of accuracy.     The principal 

feature underlying the biped gait is the compass motion of the two 

lower extremities about alternate centers of rotation.    Such a rotation 

of the body about alternate centers brings about an overall translatory 

motion.    In Fig.   3,   suppose that the left leg has just completed its 

foreward swing and come into the restraining portion of the support 

(stance) phase.     The deploy action of the right leg pushes the body for- 

ward with the hip describing a circular arc ABC about the supporting 

left foot.    At passing point B,   the center of gravity of the body is 

directly above the femural head of the thigh.    After that,   the hip pre- 

scribes the segment BC with the right leg in swing motion under 

gravity.    At C,   the swinging right leg restrains   the falling tendency 

and goes into the stance phase of activity.    Concurrently,   the left leg 

in the late stance undergoes deploy and continues into swing.     This 

results in a second arc CDE for the hip with the role of the left and 

right legs interchanged.     When this is completed,   the entire cycle of 

the  "double-step" is repeated.     The compass gait results in a series of 

intersecting circular arcs for the hip trajectory in level walking.     In 

actual motion,   the gait is made more graceful and efficient during 

transfer between adjacent arcs by additional motion of the legs and 

pelvic adjustment.     The smoothed  action results in an almost sinu- 

soidal trajectory for the hip. 
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c.    Phasic Activities and Temporal Patterns [4] 

The smoothed pattern of the biped gait requires a good deal of 

coordination in the activities of the two lower extremities.     The result 

is that there are two characteristic phases of activity in a  "double-step" 

the stance (restraint,   support and deploy) and swing.     In normal 

walking,   the phasic activities of one leg occur with regularity and are 

coordinated with those of the other leg.    Fig.   4 illustrates such a 

temporal pattern.    Note that there is a brief double stand period 

(restraint/deploy) when both legs are in contact with the ground.     In 

fast walking,   approaching running,   the double stand becomes shorter. 

In running,   there is even a brief period when both legs are in the air. 

The mechanism of the  striding mode in normal walking is different 

from that of the running mode.     Using a foot-switch method,   it has been 

measured that the stance phase occupies roughly 60% of the time 

required for a double-step.   The remaining 40% is swing motion.     The 

deploy (or restraint) portion in stance takes 10 to 1 5% of a double-step 

period [4, 19]. 

d.    Postural Control and Stability [22, 23] 

The foregoing paragraphs describe the behavior of the lower 

extremities in level walking.    As far as the upper part of the body is 

concerned,   the center of gravity of the trunk is imparted on an oscil- 

latory path as a result of the alternate bipedalism of the gait.    As one 

leg serves as support while the other goes through swinging motion, 

there is imbalance of moments and forces in the frontal and horizontal 

planes.     These tend to destabilize the trunk from the upright position, 

as it resembles an inverted pendulum mounted on a moving platform. 
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To maintain upright position and minimize undesirable oscillations, 

coordination of various muscle activity is needed.     From a locomotion 

standpoint,   the progressive translation of the body is of main concern. 

The associated unstable tendency of the trunk is an unfortunate conse- 

quence inherent in the biped gait. 

e.     A Hierarchical Control System for Biped Locomotion 

From the temporal,   phasic and stability properties of the biped 

gait,   it is quite apparent that the locomotion process is involved indeed. 

It has been postulated that the control system possesses a hierarchical 

structure,  with two or more levels of decision,   coordination and 

regulation for a desired gait and adaptation within a given environment. 

Important objectives of the control system would be: 

(1) determination of speed,   step length parameters and direction 

of progression 

(2) synchronization of the motion of the two extremities to 

achieve coordinated phasic activities and temporal patterns 

(3) adaptation to ground profile within a double-step 

(4) maintenance of up-right posture . 

With the exception of (1),   the gait features we have described 

fit into the objectives of the controller.      From an organizational view- 

point,   the goals (3) and (4) are realized by a control system under the 

supervision of a higher level controller connected to (1) and (2).    A 

schematic diagram of the locomotion system would appear as shown in 

Fig.   5. 

Such a functional structure for the control system possesses the 

advantages described by Tomovic [24]: 
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(1) A minimal amount of supervision required on the part of 

controllers at the algorithmic and higher levels in executing well- 

learned tasks such as normal level walking. 

(2) Flexibility at the dynamic level to adapt to a particular 

environment witnin a double-step. 

The present interest is in finding out the various actuating 

moments to simulate the biped gait.     This implies that the analysis is 

performed at the dynamic level of the hierarchical system.     The choice 

of speed of walking,   step-length,   direction and other relevant parameters 

are the goals of the algorithmic controller,   as is the coordination of 

muscle group activities. 

3.     Energy Expenditure and "Optimality" in Locomotion 

Besides the broad study of the functional characteristics of the 

biped gait,   the ergonomics of locomotion forms another important area 

of research.    An average person walks over a million steps in a year 

and certainly many times more over the span of his lifetime.    In situations 

such as level walking where speed is not an important factor,   it is thus 

very appealing to think that the walking activity would involve minimiza- 

tion (optimization) of some type of energy performance criterion.    In 

search for  such an  "optimality" in locomotion,   experimental studies in 

energy expenditure,   oxygen consumption associated with locomotion have 

been performed.    Significant contributions include the works of Fenn, 

Elftman [7],   Ralston [25],   Cotes and Meade [26].    Earlier results were 

obtained by Atzler and Herbst.     Theoretical attempts to formulate or 

demonstrate a  "minimal" principle were made by Nubar and Contini [27] 

and Beckett and Chang [28]. 
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By far the most interesting result has been the measurement of 

mechanical work done by the various body members during walking as 

a function of speed,   step-length and pace frequency parameters.    In 

the experiments by Atzler and Herbst as reported in Elftman    [5],   they 

plotted energy expenditure for different speeds and step lengths.    A 

minimum expenditure curve exists for the appropriate combinations of 

speed and step-length.    In a more recent study by Coates and Meade, 

similar results were obtained and various expressions were obtained 

from experimental data by interpolation.    Milner [20] and his associates 

performed quantitative study of EMG activity of the muscles of the 

lower extremities in connection with the programmed electro- 

stimulation problem.    In particular,   they showed that the EMG activity 

is minimum when their human subject is allowed to walk at a pace 

frequency of his own choice for a given speed of walking.     Whether 

human locomotion does indeed obey an optimality principle has not 

been proved by experiment or theory,   but the results gathered to-date 

do support the suggestion. 

4.     The Optimal Programming Approach 

We have briefly summarized the two important areas of loco- 

motion research.     To cast the biped gait in an optimization context, 

the underlying hypothesis is that the locomotion activity follows a 

principle of optimality.    In the subsequent analysis,   an appropriate 

minimizing performance criterion is developed which reflects or 

measures the mechanical work done by the muscles of the lower extrem- 

ities during walking.     The system dynamics and auxiliary constraints 

will be developed on the basis of gait information mentioned earlier. 
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Numerical solution of the resulting optimization problem leads to 

specification of the various moment quantities and the simulation of 

gait patterns on the basis of minimum mechanical energy expenditure. 

This approach,   using modern control theory,   attempts to unite 

the two areas of experimental work.    It differs from the other studies 

in that the actuating moments are not predetermined on experimental or 

intuitive grounds.     The programming approach,   if proved fruitful, 

opens a new way to study the locomotion problem and quantify prosthetic 

design.     To formulate the problem structure,   specification is required 

of the following: 

(1) An appropriate mathematical model for simulating the 

functional behavior of the locomotor system. 

(2) Auxiliary constraints - kinematic and dynamic on the basis of 

gait information. 

(3) Initial,   terminal and "inflight" conditions. 

(4) An optimality criterion which can be extremized to yield the 

actuating moments and other quantities of motion. 
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B.     Mathematical Modelling of the Biped Gait 

1.    Introduction. 

In a quantitative study of the biped gait,   the important moving 

units are not the various bones which support the surrounding tissues 

but the total mass of the segments which rotate about their respective 

joint axes.     The central straight line which extends between two axes of 

rotation is called a link.     This may be longer or shorter than the parti- 

cular bone it represents.     For example,   the femur and humerus are 

longer than their respective links while the tibia and radius are shorter. 

Functionally,   the human body is an articulated system of links. 

Although the overall displacement of the body is translatory,  motion is 

achieved by angular displacements of the links about their respective 

axes.     The compass motion as mentioned earlier is the basic mechanism 

of biped locomotion.     The objective of mathematical modelling is to 

describe the angular motions and relate them to the overall translatory 

process of locomotion.    Such a mechanical description is separated 

from the action of the muscles and other physiological considerations. 

The multi-linkage models have been studied by Nubar and Contini 

[27];   Vukobratovic and his associates [22, 23, 29];   Beckett and Chang 

[28];   and Hill [30].     Complexity of the models developed depends on the 

assumptions made about the gait and degrees of freedom allowed in the 

motion.    In a paper by Nubar and Contini,   a system of linear differential 

equations was derived for small angle dynamics.     However,   they set 

pertinent derivatives to zero and studied only static configurations of the 

gait.    Marie and Vukobratovic formulated the leg in level walking as a 

two link system.     The assumptions on the gait were that the hip was 
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stationary and the foot in continuous contact with the ground during a 

double-step.     There was no mention of the reactional and internal forces. 

In two joint papers by Vukobratovic,   Frank and Juricic,   the stability 

problem of the trunk was  studied on the basis of a compass gait for the 

lower   extremities.    In the same vein,   Beckett and Chang studied the 

kinematics of swing phase motion under a  "minimum energy" hypothesis, 

but the interesting point is that they obtained the moment profiles without 

any optimization procedure.     Lastly,   Hill proposed a nine degrees of 

freedom model for postural study.     The dynamic equations are 

apparently too lengthy to derive.'     Thus it appears that  realistic efforts 

in modelling are still lacking.     The works done to-date share the 

following features: 

(a) They are multi-linkage type mechanical models. 

(b) The analysis is confined to motion in the  sagittal plane. 

(c) Only the case of level walking has been treated.     Other 

configurations such as walking upstairs,   downstairs,   or over rough 

terrain have not been considered at all. 

(d) The models have been much simplified to render the problem 

tractable.     The  result is that they embody little or none of the described 

properties of the actual biped gait. 

2.     Development of the Mathematical Model. 

The present model emerges as a compromise between complex 

high order models and the simple two-link type.    Under suitable 

assumptions,   a high order model is decoupled into two parts.     The part 

relevant to lower extremity is still of a two-link type.     However,   appro- 

priate constraints are imposed to insure realistic simulation of the #ait 
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patterns.     Modern control theory can handle constraints effectively 

while the classical methods cannot.    The development of such a 

"constrained" mechanical model takes place in the following stages, 

a.     Two Basic Configurations. 

Based on the qualitative features of the biped gait,   the actual 

process can be visualized as being made up of two basic configurations 

or modes of motion.     Fig.   6 illustrates the basic configurations.     The 

first is referred to the double-stand period when both legs are in contact 

with the ground.    One leg supports the body,   restraining its falling 

tendency as a result of the previous swing motion.     The other leg starts 

its deploy action through rotation of the foot about its toes (more pre- 

cisely,   the ball of the foot).     We call this the deploy/restraint configura- 

tion.     The second mode follows the first in that the restraining leg now 

takes up complete support of body weight while the other leg,   previously 

in deploy,   is in its swing motion.     We call this the support/swing mode. 

Thus,   the biped gait is an alternating sequence of these two basic 

configurations,   with the role of the two lower extremities interchanged 

during a double-step. 

Left leg: 

Right leg: 

Restraint 

Deploy 

1 

I* 

Support 

Swing 

Deploy 

Restraint H 
a double-step- 

Swing 

Support 

Restraint 

Deploy 

The idea of two basic configurations introduces symmetry into 

the biped gait.    It excludes singular behavior such as one leg starting in 

deploy while the other is still in the last stage of swing motion.    In the 

actual case,   such singular modes,   if they exist,   usually occur for a very 
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brief interval so that they can be neglected in a first study.     In the 

current literature,   the restraint,   support,   and deploy portions are 

collectively known as the stance phase of activity.    In our formulation, 

we will refer to restraint and support collectively as the  "stance" 

portion. 

b.     Derivation of the Model. 

Fig.   8 depicts a high degree of freedom model for motion in the 

sagittal plane.     Considering the locomotor system as a whole,   the 

inertial and gravitational effects of the foot are small in comparison with 

those of the shank or the thigh.     The average weight of a foot is about 

1  to 1. 5% of the body and its dimensions are also small (approximately 

j ) as compared to the thigh or the  shank.     Furthermore,   its behavior   is 

more or   less specified in a double-step.     This is  so because,   in the 

stance position,   the  foot is almost stationary except for a brief moment 

following heel strike to absorb impact.     In deploy,   the ankle of the foot 

describes a circular arc with the center of rotation located about the 

ball of the foot.    In swing,   the foot is locked withthe shank at an approxi- 

mately constant angle.    Such a kinematic behavior of the foot can be 

described by appropriate constraints on the thigh and shank variables. 

Dynamically,   the foot is  subjected to large ground reaction forces which 

exceed body weight in the stance position.     Characteristic profiles of the 

forces are shown in Fig.   7.     The actual  "shape" of these forces depends 

primarily on the gravitational and inertial effects of the motion of the 

upper part of the body.     The internal forces X, Y at the ankle joint in turn 

depend almost entirely on the ground reactions.     The up-shot of all this is 

that the behavior of the foot can be alternatively described by appropriate 



hip trajectory 

(h(t),v(t)) 

V, Potential Energy =0 

FIG. 8    COORDINATE SYSTEM  FOR THE HUMAN  LOCOMOTOR 
SYSTEM   MODEL. 

NOTATION:  a, « distance of center of gravity of the thigh segment from hip joint (H) 
knee  "    (K) 

ii ii it ii ii      II shank II II 

{, -- length of the thigh segment 
l2=         shank     " 

m, £ mass of the i-th segment (i • 1 -* thigh; i • 2 => shank; 
i = t => HAT section) 

Y,X • vertical and horizontal reactions at the ankle 
Ma= ankle moment 

Uj= effective moment for the i-th link 
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constraints and equivalent forces at the ankle.     This device reduces the 

order of the system dynamics. 

With the motion of the foot considered,   we are now in a position 

to derive the mathematical model for the locomotor system.     To 

achieve symmetry in the equations,   let (h(t), v(t)) denote the horizontal 

and vertical position of the hip.     Let the variables <j> and y De assigned 

to describe the leg in the stance portion.     The leg in deploy and swing 

is described by the angles x,   and x?.     The head,   upper extremities and 

trunk portions are collectively considered as a single link described by 

the variable   w.     Note that the hip position (h(t), v(t)) is a function of the 

variables <ji, y.     This is also dependent on x.   and x_ in the deploy 

portion,   i. e. : 

h = XA " *1 sin (^ ' K] + *2Sin (Y " ^ + K) (M 

v - y»   + ^i c°s (9  - <J)   ) + S.? cos (y - (j> + 4   ) 

where (x.,y,) denote the position of the ankle.    Similar expressions 

hold for the x,   and x . variables in the deploy portion.     To carry out 

the derivation by use of Lagrange's equations,   expressions for the 

kinetic and potential energies of the various links are needed.     The 

centers of gravity for the respective links are: 

(1)    thigh in stance portion 

*4 = h+ a 1 sin (4" <j>0) 

^4=v"a 1cos ^ ' (^o) 

(2)   shank in stance portion 

x    = h + i.   sin (<j> - (j>   ) - a _  sin (y - cj> + cji   ) 

7    == v - lj  cos (4  - 4Q)  - a 2 cos  (y - 4 + 4Q) 

(2) 

(3) 



(4) 

(5) 

(6) 
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(3) thigh in deploy and swing portions 

x,   = h + a      sin (x,   " 4   ) 

y.   = v ~ a ,   cos (x,   - cj>   ) 
1 i 1        ' o 

(4) shank in deploy and swing portions 

x -> - h + St.   sin (x,   - d>   )  - a     sin (x-,  - x.   + <j>   ) 
Z L 1       To 2 2 1       To 

y 2 = v - t,   cos (x,   - q>   )  - a _ cos (x?  - x.   +9   ) 

(5) trunk motion for all portions 

x    - h -r a    sin u 

y     = v +• a     cos u 

The velocity of the center of gravity for each link is obtained through 

differentiation with respect to time.     From this,   the total kinetic 

energy of a link is the sum of translation component due to motion of 

C. G.   and rotation about the C. G. ,   i.e.: 

(T) = (T + T ) v    'i-th link      v   C.G. Rot. 'i-th link. (7) 

The total kinetic energy of the link system is 

T = Ti+T+T+T+T- (8) 
9 v x, X2 CJ 

After manipulation,   rearranging and regrouping terms,   the total 

kinetic energy expression can be concisely expressed as 

T = j A
0(^ +^) +1 V2 +| A2(v - <fr)2 +i Ajx^+I A2(k2-Xl)

2 

+ i Aji    + C1x1(ht2 + vtj) + C2(x2 - x^i-ht^ + vtj) 

- C3Xl(x2 - Xl)t6 + C1cf(ht2 + vtj) + C2(y - i)("ht4 + vt3) 

- C^<j>(y - <j>)t/   + C£-w(h cos w - v  sin w) (9) 
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where       A     = 2(m,   + m,) -t- m 
o I c. I 

2 2 
A.   = I.   +m.a     •{• m-pi, 

A2 = h +m2a2 
2 

A    =1    + m   a 

C ,   = m , a 1   + m^f. 

C2 = m2a2 

C3 ^m2a2*l   = CVl 

C _  = m   a 
5 u   u 

tL  -  sin(<j> - 4Q) t1   = sin(x1   - cj>   ) 

t.,  = cos(d)  -  (j)   ) t_  = coslx.   -  d>   ) 
2 T        ' o 2 1        To 

t0 =  sin(v _ 4 + cj)   ) t_  -  sin(x_,  - x,   + (j>   ) i '       7       7 o 3 2 1       To 

t4 - cos(y - 4 + 4Q) t4 = cos(x2 - Xj   T 4Q) 

f 

t5 = sin(y) t5 =  sin(x2) 

! 
t,   - cos(y) t,  = cos(x-) 

Similarly,   the total potential energy of the system is 

~= (AQV - C1tz - C2t4 - Cjt2 - C2t4 + C5cos u) (10) 

The equations of motion are obtained by substituting the T and V 

expressions into 

d / 9T\       dT 9V 
dT(aq-)-¥q7+ SqT  =  Mx <"> 

where q.   represents the angular variables and M.  the effective moment 

for the appropriate link.   The result is a system of five nonlinear, 
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)        (12) 

coupled second order differential equations.     Implicitly,   the system of 

equations can be expressed as 

F   (<h<j>>4> Y» Y> YJXxjXpX^x^j^j^jUjWjW^h, v) = M 

F(4,<M; --- ;h,v) = My 

^(4,4,4; --- ;h,v) -. Ml 

F2<4, M;   -— ;h,v) = M2 

^ Fw(u,u,u;h. v)  = M^ 

Explicitly,   we have 

(1)    Leg in stance portion. 

A  (v- v. +h-h.)+A,i -A0(y-$) + C1(ht0 + vt. ) +C .'i(h, t, + v.t.' 
°     4      412 1211i2<j,1 

+ C1<j>2(-h.t1 + v.t2)-C2(-ht4 + vt3)+C2(Y-$)(-h.t4 + v.t3) 

+ C2(-y-cj>)2(h.l3+v.t4)-C3t6(Y- 24)+C3t5y(Y- 4) 
4 "    4 

J 

I I .2, i i t i 

4-C/x, (h.t, + v.t, ) +C1x.(-h.t, + v.t„) + C0(x, - x, )(-h,t . +v.t.) 
1    1       i   £ .1 11 i   1 \   c. L     c.        1 i4 i3 

cp cp cp cp cp cp 

2  •      '     .      ' • , 2  • 
+ C2(x-,-x,)   (h.t  +v.t  ) + CrC(h.bosu-v.sinu) - Cri   (h.sinu + v.cos u) 

cp  ~       cp cp Cf cj> cj> 

9v 

3cp ' 

•« •• •• . '2   • 
A  (v-v , + h-h .)+A-,(V-4)+C14(h.t0+v .t, )+C,4(-h.t. + v.t,) 

o Y Y ^   '     T iTY2       Y 1 1 Y 1       Y ^ 

(13) 

C2(-ht4 + vt3)+C2(Y -4)(-h.t4 + v.t3)+C2(Y-4)   (h^t3+v.t4) 

C3t64+C3t5ci2+C1x1(h.t2 + vtt,.)+C1x
2(-h.t;+v.t2) 

i i 

•*lH-V4 + SV +C2<*2" ^l^V^Vi1 
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+ <Ao-f7 + C2t3)g = MY (14) 

2 
where h =  -rrh:   h = —s- h:   h.   - — h   and similar expressions hold for 

dt (J.     a<|> 

v.,   v,   v,   etc.     The effective moments Mi  and M    are given by 
4 9 Y 

Mi  = Uj + M,  + Y(l tj- t2t   ) + X(£1t2 + it.) (15) 

M    = u0  - M    + Yl0t,  - Xj^t, (16) 
Y        £ Y ^ 3 c 4 

u,   = Moment generated by muscle action about the hip joint 

u? = Moment generated by muscle action about the knee joint 

M     = Ankle moment a 

Y = Vertical component of the internal reaction force at the 

ankle joint 

X = Horizontal internal reaction at the ankle. 

Specification of the quantities X,   Y and M     will be considered later. 

(ii)    Leg m deploy portion. 

... ••'..' 
A(v-v.   +h-h.   )+A.x,   - A_(x, - x,) + C, (ht0 + vt. ) o x, x, 11 2    2        1' 1       2 1 

+ ci2i<ii1v%ti)+ci*i<"&A1
ti+*i1v -c2(-ht;+vt;) 

+ C2(^"'^l)("flx1
t4+{rx1

t3)+C2(i2"il)2^x1
t3+^x1

t4) 

- Cot,-(x0 - 2x, )+Cotcx0(x0 - 2x, )+C, d>(h.   t0+v.   t, ) 
3 6    t 1 3 5   A    2 1 1TX   x,   2       x,   1 

+ C1^-n.it1+v.it2)+C2(Y^')(-h^t4 + v.it3) 

'  2 • . •• • 
+ C?(Y

_
4)   (h-   ^+v,   t   )+Cc;w(h.   cosw-v.   sin w) 

^ X.    J X-I     * -^ X. Xi 

- C   u   (h.    sin w + v.   cos u) + (A    |^— + C.t    - C?t   )g  = M.      (17) 
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Ao<v'- vfi' V+V$2"xi)+cisi(V2+Vi>+Ci^("V^St2) 

-c2(-ht;+^)+c2(xfxp(4 t;+v t;)+c2(x2-x/(h t;tv t) 

fS^i'H\VV3)+C2(i"*'\t3 + ;x2
t41 

The effective moments M,   and M? are given by 

81*1  •|2t3) + X'(£lt2 1 Ml  = u + Ma   + Y'(Vl   ' V^ + X'(jeit2 + £2t4) (19) 

M    =u2 -M*   +Y,i-t_ -X'i,t, (20) l2      "2 a 2L3 2 4 
! 1 

where M   ,   Y ,   X   are moments and internal reactions about the ankle 

joint for the deploying leg.     These quantities calculated from the tail 
i 

portions DE and D E of the reaction profiles in Fig.   7. 

(iii)    Leg in swing motion. 

AJJCJ -A2(x2-x1)+C1(nt2+vt1)-C2(-ht4 + vt3)-C3t6(x2-ZxI) 

+ C3t5X2(x2 -2x1) + (C1t[ "C2t3)g - Ml (21) 

A2(x2- 5J1)+C1(-'ht4+vt3)-C3t6x1+C3t5x^+C2t3g -   M2 (22) 

where       M.   = u. 

M2 = u2      . 

(iv)    Motion of the Trunk. 

A  LJ + C,-(h cos u - v sin u)  - Ccg sin u - M (Z3) 
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where 

M^ = uy - Ul (24) 

u    = effective moment due to muscle actions of the trunk 
and upper extremities. 

Equation groups (i) and (ii) form a system of coupled equations 

describing the motion in the restraint/deploy configuration.    Note that 

the expressions are identical except for the interchange of variables  - 

x,  and x? for <j> and y.    This is reasonable as both legs are in contact 

with the ground and the (h, v)  - description for the hip position introduces 

symmetry into the expressions.    In state variable language,   the system 

of equations is equivalent to an eight-dimensional vector differential 

equation.     Equation groups (i) and (iii) describe the support/swing mode 

of motion.     The swing equations are comparatively simple and contain 

no (j>,   y variables explicitly.     Equation (iv) describes the trunk motion in 

the sagittal plane. 

c.    Decoupling and Simplification of the Model. 

The foregoing equations describe the complete behavior  in the 

sagittal plane and no approximations have been introduced.    Motion of 

the body in the frontal and horizontal planes will introduce additional 

equations but no modification in the present ones.     However,   such a 

"high order" model is very complex to handle.    Although the differential 

equations can be numerically integrated as an initial value problem, 

what is at hand is a multi-point boundary value problem from the optimal 

programming formulation.    Simplification of the model is necessary to 

render the problem tractable and to obtain insight into the problem.     The 

major complexity of the model is in the coupling of motion between the 

two lower extremities as expressed in (h, v) and their various derivatives. 
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The central idea in simplification is to decouple the motion of the two 

legs.    In level walking over the range of normal speeds,   pace frequency 

and step-length,   the hip position (h, v) describes a characteristic 

trajectory.     The horizontal component,   h,   is uniform motion while the 

vertical component describes a double period sinusoid about some mean 

value.     Thus,   to obtain a realistic simulation of lower extremity motion, 

one may introduce the auxiliary constraints 

h = XA " ll sin((* " <U + lZ sin <Y " 4 + 40) = %-) (25) 

v = yA + lj cos ((j. - 4Q) + £2 cos (y - 4 + 4Q) = "g (t) (26) 

for the leg in stance and where f(t) and g(t) are prescribed time 

functions for the hip trajectory.    Similar expressions hold for the leg 

in deploy.     The auxiliary constraints simplify the equation groups (i), 

(ii) and (iii) somewhat but we still have a high order model as h„,   h., 

4 
h.    ,   h.    ,   etc.   are non-zero.     To obtain further  simplification,   it is 

xl       x2 
assumed that all the partial derivatives are zero,   i. e.   h. =  0,   v.  = 0 

4 4 
and so on. Such a step amounts to the consideration of the hip as the 

origin of a moving coordinate system, prescribing the characteristic 

trajectory of the hip.    Useful expressions for the hip position are 

f(t) = vQ(t + tQ) ; [ft] (27) 

g(t) = eo  "T2     Sin¥(t + P '   T)      :     [ft] (28) 

where       v    = velocity of level walking 
o ° 

t     = constant based on the initial configuration of the system 

e     = average height of the hip above the ground 

T = period of a double-step 

j3 = constant dependent on initial conditions of motion. 
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The device of prescribing a hip trajectory has been used by Galiana 

[33],   Beckett [28] and Wallach [34] in their various studies.     From 

this,   we obtain a decoupled model for the optimization problem. 

Simplified Dynamics. 

(i)    Stance Portion. 

(A1 +2C
3
t6)i' " (A2 +C3t6)Y + C3t5Y(Y-2ci)) + (C1t1  -C^HV + g) 

= ux  + MQ   + Y(£1t1  - i2t3) + X(i1t2 + t2t4) (29) 

- (A2 + C3t6)| + A2y + C3t542 + C3t6(v + g) = uz - Ma   + Y£2t3 

- ^2t4X (30) 

v =   g (31) 

(ii)   Deploy and Swing Portions. 

The form of the equations is identical with those of (i) except for 

the following: 

(a) The variables x,  and x, replace cj> and y- 

(b) The terms M   ,   Y ,   X   replace the corresponding terms 

in (i) for the deploy portion. 

(c) In swing,   all terms due to ankle moment and reactions 

vanish. 

Because of the  similarity in the equations,   we can now adopt a 

common notation.     Let x,   and x?  stand for the thigh and shank angles 

respectively (i. e.   for cj> and y in stance;   x,   and x? in deploy and swing). 

Define also x_ = x,;   x.  = x?,   then we obtain the equations in first order 

canonical form 

x(t) = f(x,~;t) (32) 
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where        x -  (X|,x2, x^x^ 

Xl  = X3 

X2 = X4 

U3=i    {(R3+^1)A2+t7(R4 + u2)} 

x4 - ^    {ty(R3 + Uj) + tQ(R4 + ~2)} 
V. 

R3 =  'SV^ ' 2x3)  " {C\h  " C2t3)(g + g) 

(33) 

R4 = -C3t5x3 - C3t6(g   + 

u    + MQ   + Y(£1t1   - £2t   ) + X(£1t     + j?2t.) in stance 

i i i 

u    = iul  + MQ   + Y (£1t1   - £2t   ) + X (£jt2 + £2t   )     in deploy 

in swing 

in stance 

in deploy 

in swing 

6    - A,t     - t    -   determinant of the dynamic coupling matrix 

t7 = A2 + C3t6 

u, - M     + Y£0tQ  - Xtjl. 2 a Z 3 Z 4 

u.  - M     + Y £,t^  - X £-,t. 
2 a 2 3 2 4 

d.    Comments. 

Using the dynamics in first order form,   one can study the motion 

of the two lower extremities by considering only the sequential behavior 

of a single leg.    Although the expressions are similar to those obtained 
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in two-link models,   we have placed into perspective that the simplified 

model is obtained through decoupling of a high order one.     In the model 

by Beckett and Chang,   only the kinematic aspects of the motion are 

considered by neglecting all reactions and ankle moment contributions. 

Wallach's [34] paper on knee prosthetics also neglected the forces and 

moment.    In the paper by Galiana [33],  the ankle moment term was 

missing as a result of the  "fixed-foot" assumption.     The decoupled 

equations are identical to those derived by Bresler and Frankel [13] 

using the D'Alembert's principle of dynamic equilibrium for their 

experimental study.     Their important results indicate that the ground 

reaction forces in the stance portion are the most significant quantities 

and gravitational and inertial effects of the thigh and shank variables 

are  small compared to these.     Thus it appears that the simplified model 

should yield realistic results provided appropriate consideration of the 

foot motion is taken. 

e.     Kinematic Constraints. 

In the deploy portion   the ankle of the foot describes a circular 

arc about the ball of the foot.     With the hip motion prescribed,   the 

angles x,  and x? are no longer independent but subjected to an equality 

constraint relationship.    Suppose that deploy starts at time t    and ends 

at t?.     Vertical displacement is  summed to yield 

eo =/8(*l> + *iCOs(x1(t"1)  - 4Q)  + 42cos(x2(t~)   - X^t")  + 4Q) 

+ dsina(t, ) 

as shown in Fig.   9.     The angles x, (t. ), x?(t. ) and a (t, ) are specified. 

Similarly,   for t    < t   "^   t   ,   we have 

e     ='g(t) +£,cos(x,(t) -cj>   ) +Lcos(xJt) - x,(t) + (j>   )+dcos<x(t). 



0 
(Deploy) (Swing) 

FIG. 9  KINEMATIC  CONSTRAINTS IN DEPLOY AND 
SWING  PORTIONS. 

vilLh(t)= v(t*t0) 

Stance portion 

(0) 

Shank 

(q,p)= Coordinates of 
the ankle (primary 
rotation center) 

FIG. 10 KINEMATIC  CONSTRAINTS  IN STANCE   PORTION. 
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Eliminating e    between the two expressions,   we have 

d sin a (t) = ex - ^(t) " ^2 " V4 " Sl = yA (34) 

S  (xjt)^ +£2-d    +(Cl -g)    *(e2-v t)'   .  .n 

ej = g (tx) + (ij^ + i2t4)-    + d sin a (tj). 

Summation of horizontal displacements gives 

Vo(Fl  + to) + *isin(xl(V  " 40) " ^2sin(x2(ri)  - x^) + 4Q) 

+ d cos a (t^ = v  (t+ t   ) + ^1sin(x1(t) - 4   )  " *2sin(x2(t) - x,(t) +4   ) 

+ d cos a (t) 

or d cos a(t) = e,  - v  t - i.t,   + £_t., = S0 - xA (35) 
<£ oil        23 2        A 

e2 = v ^1  + ^1*1  " ^S^t    + d COS a ^0 

Eliminating a (t) between S,   and S       we obtain the desired relationship 

-2(e1   - g )(lltz + i2t4) - 2(e2 - v^K*^  - i^) = 0- (36) 

At time t?,   the angle 6   between the shank and foot approaches 

a limiting maximum value,   6 max.    During swing motion,   6=6 max 

(i. e.   foot-locking) while the toes of the foot are kept above the ground. 

From Fig.   9,   we thus have the inequality constraint 

SS(x;t) ="g(t) + ljt2 4- l£    + d cos p(t) - e     $0 (37) 

(3   =  77 - 6 max - 4    + x,(t) - x2(t) (38) 

for t?  ^  t ^  t   ,   t    being the end of swing (i. e.   t    = T + t   • 

T = period of a double-step). 

In addition to state variable inequality constraint (37),   the angle 

x?(t) has to be positive (x2 > 0) during the swing.     However,   the multi- 

linkage mechanical model does not take into account such a restriction. 
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This aspect of model limitation does not appear to have been noticed in 

previous investigations.    A useful device to alleviate the difficulty is to 

adjoin a "soft" penalty [35] to the performance criterion J    under optimi- 

zation',   i.e.   define 

/>        dt 

for a sequence of y   :    y    >Yi>Yo >Y —*"^J_-     The penalty becomes 

effective as x?—»0    but smaller as x?(t) becomes more positive.    A 

restriction is that in iterative computation,   the trajectory x?(t) has to 

remain feasible,   i.e.   x?(t) > 0 Vt e [t?,t  ].    Intuitively,   the factor 

Ys —7-.    is equivalent to a nonlinear spring placed about the knee joint and 
X-p \T.) 

the parameter y    measures its stiffness. 

In the stance portion,   the foot is more or less stationary except 

for the brief moment following heel strike.     The dynamic behavior is 

difficult to describe because a rigid link cannot describe the behavior of 

a  "round" foot.    Fig.   10 illustrates the roll-over situation where the 
i 

weight bearing leg rotates about its ankle (0 ) - the primary rotation 

center.     The pressure center where the ground reaction forces are 

acting is gradually transferred from the heel towards the toe.     The 

effective kinematic constraints in this period are that the ankle (x.,y.) 

coordinates follow a prescribed trajectory,   (q(t),p(t)).    In a rough 

analysis,   q(t) and p(t) can be taken as constant.     Thus,   we have 

S^S(x;t) =^(t) + iYtz + L,t4 - eQ + p(t) = 0 (40) 

S"(x;t) = VQ(t + tQ) + ^tj  " y3 " q(t) =0 (41) 

j   J    has yet to be defined. 
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The particular choice of p and q profiles has to depend on experimental 

data.     Fig.   11  shows the typical profiles.     Note that they are almost 

constant except for the initial restraining moment. 

f.     Quasi-Static Estimation of Ankle Moment and Reactions. 

Having developed the dynamic equations and kinematic constraints, 

the model is incomplete until the ankle moments and reaction forces 

are known.     Fig.   12 shows a free body diagram of the foot.     The forces 

f    and f    represent the vertical and horizontal components of the ground 

reactions due to weight bearing and trunk motion.     These forces have 

been measured by various investigators using force plates and Fig.   7 

shows the typical,   normalized profiles over a wide range of level walking 

speeds and step-lengths.     To describe the foot motion,   we write the 

equations for translation motion for the center of gravity (O^.,) and 

rotation about 0„.    On summing the vertical forces,   we have 

*VF = fv  " M
FS  " Y 

or Y   = fv - MFg - (MFyF) . (42) 

Similarly,   summing the horizontal forces gives 

F  F       h 

or X =   f,    - M   "x- . (43) h F   F 

Taking moments about 0„ and rearranging terms yields 

Ma   = fv(xp " XA> + V^A • Vp)  - M
F8(XF " XA> + <MF*F)(*F " >A> 

- (MFyF)(yF - yA) + I^d (44) 

~~       -2 2 
1       =   Moment of inertia of a foot about its C.G.   (~ 10     slug-ft   ). 
r 



p(t) 

>dsin(t.) 

restraint       support restraint      support 

jUdcos(t|) 
I = step length 

FIG. 11    TYPICAL PROFILES   FOR  ANKLE  COORDINATES  IN  STANCE 
PORTION.    (FROM BRESLER AND FRANKED. 

(>Q to right) f v ( > 0 upwards) 

Op • pressure center (xp,yp) 

Op • center of gravity of the foot 
(«F,yF) 

0A • ankle (xA,yA) 

X,Y - reactions (internal) @ the ankle 

fv,fh= vertical and horizontal 
components of ground forces 

FIG.  12 FREE   BODY   DIAGRAM   OF  THE   FOOT. 
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It is obvious that the ankle  reactions and moment depend on the ground 

reactions.     Since fy » (MFg);   iy» (MFy'F);   fR » (M^ily);  and (Ip-a ) 

is small because 1^ is  small,   we can obtain a simple   "quasi-static" 

estimate of the dynamic quantities by neglecting the inertial and gravita- 

tional terms,   i. e. : 

Y ~ f v 

X ~ fh (45) 

M    ~ f (x    - x. ) + £u(yA  - y  ) a vv  p        A'       hwA      'p' 

The ankle coordinates (x.,yA) are specified through the kinematic 

constraints derived in the preceding section.     As far as the pressure 

center (x   , y   ) is concerned,   we have y     =0 throughout the stance p   7p 7p 

portion.     In the  report by the Eberhart-Inman group [12],   force plate 

data reveals an approximately linear transfer characteristic in the 

stance portion,   i. e. : 

x    ~ at + b (46) 
P 

where a ,   b are parameters dependent on walking speed,   foot length 

and other parameters.    During deploy,   x    is fixed at the ball of the 

foot.     With the dynamic quantities specified,   the multi-linkage model 

with auxiliary constraints is now complete. 

3.    Discussions. 

We have derived,   through a succession of steps,   an appropriate 

model for the optimization problem.     It is a two-link model with kine- 

matic constraints and ankle forces and moments.     Fig.   13 is a flow 

chart illustrating the development.      Note that models at different levels 

of detail can be obtained by allowing additional degrees of freedom and 
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complexity. 

An inherent drawback of the high order model is that the dynamic 

variables chosen for description are always coupled.     This implies the 

matrix inversion is necessary to convert the equations to first order 

form.     For models with more than two degrees of freedom,   matrix 

inversion with analytic expressions  soon becomes too messy to handle. 

The use of symbolic manipulation language such as FORMAC appears 

indispensible in the study of complex models in locomotion and bio- 

engineering in general. 

The use of a prescribed hip trajectory and kinematic constraints 

for ankle motion is a useful device.     Locomotion under different conditions 

such as up an inclined surface or over other terrain only changes the 

form of the prescribed functions and not the other expressions.     Since 

modern control theory can handle readily auxiliary constraints,   it 

appears very promising in the study of locomotion under various environ- 

mental conditions. 
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C.    On an Energy Performance Criterion in Human Locomotion 

1.     Introduction. 

Having developed an appropriate model for the optimal programming 

problem,   the next step is to derive a suitable performance criterion.     As 

mentioned earlier,  Atzler and Herbst [5] and Cotes and Meade [26] 

independently obtained experimental results which show a minimum 

expenditure of mechanical work for appropriate combination of speed, 

step-length and pace frequency.     Theoretically,   Nubar and Contini [2.7] 

were probably the first and only thus far to propose a minimal principle 

for human locomotion. 

They hypothesized that energy expenditure under several simul- 

taneous forms  (mechanical,   heat and chemical) is associated with 

muscular activity.     The muscular effort,   an aggregate quantity,   is 

defined quantitatively in terms of the effective moments which actuate 

the locomotor system.     The locomotion process is thought to occur in 

such a manner as to minimize some  "effort" function E, (performance 

criterion) consistent with imposed constraints  - physiological,   physical 

and geometrical.     The effort function they proposed is of a quadratic 

variety,   i. e. 

E, =     )    C. u . (t)  At 
*        Li      J     J 

j 

where u .(t) represents the effective moment acting on the j-th link; 
A J 

C. being an effectiveness weighing factor;  and At is the time interval 

over which optimization is performed. 

Their work,   however,   has two important shortcomings.    At that 

time,   optimal control theory and numerical computation were not 
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developed extensively and the proposed problem was not seriously 

tackled.    A second and more fundamental question is that while the 

effort function being chosen is selected on the basis of mathematical 

tractability and physical appeal,   there is no apparent connection to the 

physiology of the muscle actuating system.     Our present objective is 

to derive a simple but physiologically based performance index. 

2.     Development of the Performance Criterion. 

Mechanical energy expenditure is the quantity of interest for the 

derivation.    In general,   mechanical work done (by or on) can be 

evaluated in two ways.    One measure is the time integral of the instan- 

taneous power which is the product of the moment about a joint and the 

angular velocity of the limb with respect to that joint.     The other 

measure is the integral of the product the force generated by the 

muscle in causing rotation and its velocity of shortening.     The latter 

method is used as it involves naturally the muscle mechanics. 

Specifically,   the external characteristics of the muscle are used. 

a.    Assumptions. 

The neural-viscoelastic model for the muscle is based on the 

following set of experiments which have been performed on both 

isolated muscle fibers and the human muscle in vivo. 

(i)   tension (force) - velocity curves by A.   V.   Hill [36, 37] 

(ii)    length - tension curves [36, 37] 

(iii)   EMG characteristics by Bigland and Lippoid [46] 

Fig.   14 illustrates these properties.     From these,   the force generated 

by a muscle is a function of neural stimulation Z,   muscle length £ and 

velocity v.     The functional form is given as [38, 39] 



1 I 

uu 

cr: 

a_ 
i— \ W ' .INCREASING 

STIMULATION 
LXJ 

o \LEVEL 

0 Vs Vm 

SHORTENING VELOCITY 

INCREASING   g 
STIMULATION   £ 

VELOCITY V,/CONSTANT 

0  70       85    100115 
% OF REST LENGTH TENSI 

FIG. 14   EXPERIMENTAL   CHARACTERISTICS  OF SKELETAL MUSCLES 
[36,37] 

ds « d^ « d 

FIG. 15      AGONIST/ ANTAGONIST  MUSCLE   SYSTEM 



42 

v 
F(i,v, Z) =  ZFQ(I)  f- (1) 

1   + b7~ m 

where       F   (£) -  maximum isometric force at length £ 

Z = neural stimulation level (0^   Z  ^   1) 

v - maximum velocity for isotonic case (i. e.   when F -  0) m i \ i 

b = constant (typical values between 0. 25 and 0. 3). 

Thus,   F is a function of three variables,   JC,   v,   Z.     By holding one 

variable constant,   the muscle length I in this case,   F can be graphically 

portrayed as a surface.     This we call the characteristic  surface of the 

muscle. 

The derivation is confined to one joint agonist/antagonist muscle 

system.     The actual muscle system involved in almost any complex 

limb motion is  seldom that simple.     We assume that the same principles 

hold for each agonist/antagonist pair involved,   and thus the discussion 

represents an average behavior of all pairs contributing to the actual 

limb motion.     The human locomotor system is equipped with an abun- 

dance of two joint muscles;   however,   Steindler [4],   Eberhart    et al [ 10] 

have shown how two joint muscles can be functionally decomposed into 

the one joint variety, 

b.    Derivation. 

Consider a limb being acted upon by an agonist/antagonist 

muscle system (Fig.   15).     With the two moment arms approximately 

equal,   there is no net rotation of the limb when each muscle exerts an 

equal force F    =  Z   F   (I  ).     The presence of static forces is to maintain 
^ o o   o   o 

joint stability and body posture.     When one muscle exerts more force 

than the other,   a net rotation results.     The amount of mechanical work 
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done by the muscle actuating system is given by. 

W =       (F    t 6 F  ) •   v  dt +     (F    + 6 F.) •   v dt U) Jo s s J       o r e K   ' 

=    \ F   (v    + v   )dt +   \ 6 F     •   v  dt +  \ 6 F.      v   dt 
J    ox  s        e J        s        s J       I       e 

where 6 F    and 0 F    are the incremental forces above the static s e 

component F    in shortening and lengthening respectively.     The corre- 

sponding shortening and lengthening velocities are v   (> 0) and v   (< 0). 

In normal locomotion,   it is taken that   |v   |  •—•   jv    j  and so the static 

dependent term F   (v    + v   ) ~ 0,   contributing little or nothing to W. 

Muscle in Shortening. 

From (1),   the   "shortening" force is 

1 --JL 
V 

Fs =  ZFo(£)    f1  (3) 

1 -   -2- 
V m 

For normal locomotion activity,   F    is not significantly different from 

the static component so that it can be satisfactorily represented as 

6 F    = F    - F s s o 

(z - z) +HT4    (I- I ) + (-^-\ ,aZ / z 
v o'      \   dl J .   v o'     I   3v    I /o 

o o / v 
o 

=  -  Z   F   (I  )(1 +>r)/v 
o    ov o x by     m 

v 
o 

¥)r° (small) 

o 

The fact that the linear terms constitute the main contribution is 
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supported by experimental results obtained in normal walking. 

(i)    The stimulation level Z appears linearly in (1) and so there 

is no approximation in (4). 

(ii)    The term due to length contribution (-• * -) (I - i  ) is considered 

small compared to the other two;   consequently it is omitted      Results 

by Elftman    on the soleus muscle indicated that the muscle length 

change is small during the shortening cycle (Fig.   16).    Also,   from the 

length-tension diagram the shape of the curve is almost flat in the 

vicinity of the rest length.    In the EMG experiment by Galiana [33J, 

satisfactory results were obtained under a length independence assumption. 

(iii)   The effect of shortening velocity v    on F    is essentially 

linear in the range of interest.     The expansion generates a linear 

approximation to the hyperbolic curve of Hill.    It is interesting to 

observe that the stimulation level Z is multiplicative  rather than additive, 

so that it controls the damping as well as the isometric force effectively. 

Physically,   the linear approximation replaces a velocity dependent 

damper by a constant one whose magnitude depends on the isometric 

conditions.    Stark [41] and Houk [42] had used linearization in their 

modelling of muscle actuators;  their results appear satisfactory. 

By neglecting the length contribution,   we have 

fiF    = F    - F 
s s o 

T F  (£ )(Z - Z  ) - B      v (5) 
o   o o m     s 

s 

where       B =  Z   F   (I   )(1  + H / v m o   o   o b m. 
s 

The next crucial step is to obtain a relationship between stimu- 

lation increment AZ =  Z  -  Z    and velocity v   .     Bigland and Lippold 
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showed that for approximately constant F   ,   v    and AZ are linearly 

related for small velocities.     This is easy to verify from (3): 

F v /v  \ 
AZT F-T£T(1  +b)^-oC v8fopM-)«l (6) 

o m \ m/ 

In the normal range of locomotion activity,   a linear relationship 

between AZ and v    still holds but with a slightly larger slope dependent 

on the maximum value of F   .     The  "equivalent linearization" is clear 
s 

from the characteristic surface as illustrated in Fig.   17.     The surface 

is a graphical representation of the functional relationship (1)  for t - 

constant.    As the muscle length changes are fairly small in normal 

locomotion,   the locus of F    lies within two characteristic surfaces ' s 

lying close together.     For F    = constant,   increasing stimulation AZ lies 

on paths AC or DB on the characteristic surface.     With F    varying 
A A ,  A 

from F    to (F   )max ~ 1. IF    (estimated from Elftman's result),   the o s o 
r\ 

locus is the curve AB on the  surface.     When projected onto the  Z  -  v 

plane,   we have an almost linear segment A'B'.     Thus,   we have an 

operating relationship of the form 

AZ = k  ((F   )max:F   ) •  v (7) s        s '     o s ' 

Note that if one uses the line A'C' instead (i. e.   no correction for F s 

changing),   the error is approximately 10% for the range of F    variation. 

Combining (5) and (7),   we have 

6 F    = (F  k    - B       )  •   v . (8) 
s o   s m s s 

Since (F    - F   ) > 0 for a shortening muscle,   then (F  k    - B       ) > 0. so o   s m 
s 

The work done by a muscle in shortening is then 
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(FC - F r 
Ws1(Fk   -B       )dt 

os       m 
t 
o 

u2   (t)  dt 
S 1 

^ 

A   . 2 2    1     rjt)uc(t)dt (9) 
(F  k   -B       ) • d   (t) 

os       m s 
s 

•* 

t 
o 

where u   (t) is the moment generated by the shortening muscle and 

d   (t) the moment arm. 
s    ' 

1        ,  x  A 1 
2rs(t)=    T (10) L    S (F  k   -B       )d 

os       m       s 
s 

Muscle in Lengthening. 

When the other member of the agonist/antagonist pair is being 

stretched,  mechanical work is done on it.     The Hill's force-velocity 

curve holds for the lengthening muscle up to a maximum allowable 

force which is roughly twice F   (i  ).     For larger forces,   the Golgi 

tendon organs  reflexly cause the muscle to yield. 

Following the same procedure as in the preceding    case,   the 

force in lengthening is given by 
A 

6 F.  = F,  - F 
I I o 

= F   AZ - B      v (11) 
o m-  £ v      ' 

B 
where v.  < 0 and £_   ^  ,     according to Stark,   Galiana.     Thus, 

B ~" 
m 

s 

the linear approximation to the characteristic surface is a piecewise 
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one with the damping during lengthening (B      ) much larger than that in 

shortening.    Fig.   18 illustrates that below saturation,   AZ and v   are 

linearly related,   i.e. 

AZ = k„((FJ :  F   )v„ (12) £vv   I'max'      o'  i. v     ' 

The work done on the muscle is 

rtf       * 2 
\ <F£  -  FQ) 

w    = .   \ ^_o dt 

(B        -Fk.) 
J mi °  l 
t o 

%-Fokl>'dfw 
t 
o 

ltf 

I r£(t)u*(t)dt (13) 
t 
o 

where r«(t) =    ^ 2—    and d.(t) = moment arm for the 

<Bm, " FokM W 

lengthening muscle (^ d   (t)). 

Total Mechanical Work. 

The total work done is the sum of lengthening and shortening 

contributions 

W = W„  + W 
I s 

S*J     (rsUs - r^dt" <14> 
t 

o 
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The net moment acting on the limbs is given by 

s          £ 
u = _  

s 

A A 
(F     - F   ) - (F    - F  ) 

s o e o 
d 

s 

d£ 
'- Us " (d")Ue s 

us~u£   for    (T") * l      • <15> s 

2 2       2        2 2       2 
Now,  u    = (u   - u.)    - u    + u. - 2u  u. «  2(u   +uj v   s       £ s        £ s   £ s       £ 

2        2 2        2 
But,  us - u£^  ug + u£ 

u    =  y(u" - uT) ;      k = constant factor 

h 
1   \     ,        ^ 2 . , 

W   =    2  J    <rs
Us  ~r£u£)dt 

t 
o 

tf 

~ \        2 
=   constant    •      \     u   (t)dt     . (16) 

t 
o 

Hence,   in the normal range of activity,   the sum total of mechanical 

energy expenditure by the muscle activating system is proportional 

to the integral of the square of the net moment. 

3.    Discussions. 

In the present derivation,   mechanical energy expenditure by the 

muscle system is the physical quantity being identified.     Although other 

quantities such as total energy expenditure by the muscles or total 



51 

"active states" of the muscles have been suggested as bases for a 

performance index,   it appears not straight-forward to develop these. 

The mechanical work done by (and on) the muscles has been of most 

concern in experimental work done to-date. 

As to the form of the effort function,   generalization can be 

made of the form 

j= |     2"IKI
P
*J -i 

i 

t 
o 

where p is some appropriate integer;  u. the net moment acting on the 

i-th link and r. the weighing factor.    Physiologically,   justification for 

one particular choice may be more difficult than for another.    For 

the case p = 0 and tf treated as unspecified,   the criterion leads to a 

"minimum time" problem and appears applicable to fast walking.     The 

p =  1  case corresponds to the   "minimum fuel" problem in optimal 

control theory.     For p - 2,   we have the quadratic criterion considered 

in the preceding sections. 
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D.    Optimization in Biped Locomotion 

1.    Problem Formulation [43] 

The constrained mechanical model and performance criterion 

form the core of the optimization problem for biped locomotion. 

Based on the simplified model,   simultaneous motion of the two legs 

is  reduced to the sequential behavior of a single leg.    Let deploy, 

swing and stance portions describe in order the phasic activities in a 

walking cycle (i.e.   double-step).     Mathematically,   the optimization 

problem can be stated as follows: 

Let tf be the time required for a double-step and t,  and t? 

partition [0,   t,] into the respective phasic portions.     It is proposed 

that level locomotion is realized by programming the hip and knee 

moments (u, ;   Uo) so as to minimize the quadratic criterion. 

.t, 

1 .       2        2., 1 
\ r^ u^+r^u^dt   ~   ? 

1 

+ 
0     JtL 

ft, 

Jt. 
(rlUl  + rzu2)dt      (1) 

for r,, r->   > 0     ;    0 < t. < t2 < t,        and subject to 

a. dynamic equations. 

k{t) - f(x, u;  t) 

i.e.,   equations (32),   (33) of the modelling section. 

b. kinematic constraints. 

Sd(x;t) =    S^ + s\ - d2 = 0 

;i =  ei "^ ~ hh • V- 

S7   =    e7  " v   t - ft.   4- £  t_ 
c. L        o 11        c. 3     j 

for   0 

(2) 

(3) 



S4 

SS(x, t) = g(t) + llt2 + £zt4 + dcos(3 - e 

(3  2   Ti - 5 
max 

cj)      4- x, 
o 1 

x2    >0 

for t.<t< t2 

for t2<t^t 
Sj    (x;t) = g(t) + Ij^ + *2t4 + p(t)  - eQ =  0 

S£s (x;t) = vQ(t + tQ) + £1t1  - £2t3 - q(t) - 0 

initial and terminal conditions. 

x(0) = x        (specified) 

Y 1(x(t1);t1) * [Sd(x;t)]t = t      = (sf + S2 - d2)t      = 0 

S^Wt^V ^x2(tl) - xl(tl) + 4Q + 6max -f - a(tl)  =0 

These are the terminal hypersurface constraints for deploy. 

A A 
x(t2) = x2 ~ d     (specified) 

x(tf) = x(0)       (repeatability in walking) 

Note  1. 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

Conditions (6),   (7) and (8) describe the configuration of the leg 

at heel off,   toe off and heel strike  respectively.    In our study,   the 

values x(0) and x(t?) are specified from experimental data,   as they 

together depict the deploy/restraint configuration at the  starting 

instant.    Such a specification appears more natural than Beckett's 

case where x(t?)  remains unspecified. 

Note 2. 

A hypersurface type of constraint is used to describe the toe off 

condition at the end of deploy.    Although the  state equality constraint 

S   (xjt) is binding throughout the  deploy portion,   the additional condition 



55 

Vf ,   = 0 is a device used to eliminate possible jumps for the influence 

equations in numerical simulation.     The Y      -  0 condition describes 

"foot-locking" for the subsequent swing;  and 6 max,  a (t. ) are set at 

110    and 70    for simulation [10]. 

Note 3. 

The condition (9) describes repeatability of motion in normal 

level walking. 

Note 4. 

From the kinematic constraints (3) describing deploy motion and 

Fig.   12,   we can write 

Sl  ~ el  " g^ " <L\t2 " £2t4 = dsina 

S    = e, - v t - £,t.   + It    = dcosa 
2        2        o 11        2 3 

where d = effective length of the foot between the ankle joint and 

the ball of the foot (i. e.   center of rotation) 

;.      tana    = (-gJ-J    ^=>   a (t) = tan" V ^J 

Sl a(t)  =   -5±- 
b2 

Sl        S1S2 
a (t) =   -s—   - -o 

2 S2 

2.    Characteristics of the Problem Formulation 

a. It is a programming approach as opposed to the direct approach 

taken in other studies. 

b. The formulation results in a multi-arc programming problem 

with three stages on account of the varied nature of the ankle reactions 

and moments;   kinematic constraints;  initial and terminal conditions. 
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c. Computationally,   the multi-arc problem is decomposable into 

three problems for solution.     Continuity in the  state variable histories 

(angular displacements and velocities) is ensured by matching the 

trajectories between two adjacent stages. 

d. The programming formulation is very flexible.     Although 

emphasis has been on the human case,   the formalism and approach 

are certainly applicable to practical designs such as above-knee 

prosthetics and remotely controlled manipulators utilized in a hostile 

environment. 

e.     The splitting up of the multi-arc programming problem for 

independent numerical solutions links to the important concept of 

sub-optima lit y in our solution.     For the present simulation,   the inter- 

mediate times t,   and t? are specified from experimental data and it is 

implicitly assumed that 

'       };     0<ti<t2<tf 

"f 

In general,   the optimal control strategy over the entire interval 

[0,t ] is not equal to the concatenation of the optimal strategies over 

the successive sub-intervals.      However,   it appears that the very 

special nature of the locomotion problem renders the sub-optimal 

solution close to the optimal one.    In both the deploy and stance por- 

tions,   the contributions due to the ankle moment and reactions are 

the major determinants in the control moment u(- ) calculation.    In 

addition,   the moments in the stance portion are determined by an 

algebraic method without an optimization procedure and so the 

J o 
<~w j\ut^iuy/ + y   \    O    W   A 1J.  ti   / + j*-"""- 

u(-) u(-) u(') u(-) 

0<t«tf 0^t«tj t  ^t^t ll          L2 t^t 
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., T(stance) .   „ , 
contribution J is essentially constant,   irrespective of 

optimization.     The cost J is a small fraction of the total 

cost because the subinterval [0, t, ] is short (i.e. -— ^ 0   1 to 0. 1 5) 
f 

and the control moments are also influenced by the ankle moment and 

^A  i    ., T(swing) . . ,.        ., .   . reactions.     Only the term J °    can be significantly minimized 

via optimization.     Thus,   it appears that the sub-optimal solution 

should be very close to the true optimal. 

3.    Necessary Conditions of Optimality;  Method of Solution. 

With the problem formulation completed,   the next step is to 

invoke the necessary conditions of optimality.    Solution for the deploy 

and swing portions are first considered as they are of a similar 

nature.     The technique is to convert the original constrained optimi- 

zation problem into a sequential unconstrained problem.     Let S(x; t) 

denote the state constraint (equality or inequality) in either portion. 

Define an extra state variable Xj-(t) such that it satisfies the differential 

equation 

x5(t) = sgn(S) •  S2(x;t) (10) 

sgn(S) #    ) 

for O^t^t,;  t.^t*-t?.     The original state vector satisfies,   of 

course,   the dynamic equation 

T 
x(t) = f(x, u,-t) ;   x = (xj, x2, x^, x4) 

With the initial condition set to zero,   i. e.   x-(t, ) = 0 for swing 

x,-(0) =  0 for deploy respectively,   then 



Sgn(S)S2(x;n)dn - 0 (13) 

=*> Sgn(S) •  S2(x; n) = 0     Vne[0, tj or ne[t1, t-,]     . 

The state constraint is thus satisfied.    A mathematical proof of the 

above penalty function technique is given by Lele and Jacobson [44]. 

As far as the initial and terminal conditions are concerned,   a 

quadratic penalty function is   used.     With these,   the necessary condi- 

tions of optimality can be  separately derived for the deploy and swing 

portions. 

In deploy,   we have the modified performance criterion for the 

sequential unconstrained problem,   i. e. 

Min Jd = cr k(x5(t1) + ty ^(t^tj) + ^^V'V + (x3(tl)_d3)2 

u 

+ (x4(t1) - d4)2}  +-|\    (rlU
2 + r2u2)dt     . (14) 

Specifically,   we solve (14) for a monotonically increasing sequence 

0<  or     < or     < <(rv an<^ subject to the equations 

x(t) = f(x,u;t) ;    x(0) = x^ 

\ (15) 

k5(t) = (Sd(x;t))2;    x5(0) = Oj    . 

The signum function Sgn(S   ) =  1 because the  state equality constraint 

is effective throughout the interval.    Define a variational Hamiltonian 

k' 
H  (x, u, X, cr    • t) as 

Hd = ^(rju2 + r2u2) +   )   \.f.(x,u;t) + X^t) (Sd(x;t))2 (16) 

j=l 

The X's are the influence functions or the adjoint variables of the 
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optimization problem.     The extremal condition is 

4 
du 9f. 

= 0 =»r.u. +   >    X.   TH~ = 0 for i =  1, 2     . 
3u. l  l     L,    J    8u. 

j = l 

(17) 

riu1+-(A2X3+t7X4) = 0 

r2u2 + 6(t7X3+t8K4) = 0 

(17a) 

a2Hd 
Note:         -s-"   = r.    > 0 for r.  > 0:   i = 1,2.     The influence equations 2 I I ' 

9u. 

and their terminal conditions at t,  are 

i       9x. 

i=l 

-,4 

-\c = 0 5 

J 

a^ 
W = 2ffk(^i id-+,// 

9
^2 

Z     9x2 

X3(tl} = 2(r k(x3(V " d3) 

W = ^k^V " d4) 

\S(tl) = (rk k 

/      (18) 

as' 
Explicitly,   expressions for the \-equations and -y  are given as follows 
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\  - Z «A2R
31 +t7R41)X3+ (t7R31 + t8R41>V + Zk 5S* '   f" 

• S 
X2 = ~5^    { A2R32~C3t5(R4*u2)+t7 ' R42 " "5"   [A2(R3 +ul ^ t7(R4+ u2^ 

\ 
+ ~5~ " {t7R32" C

3
t5(R3+ul)+t8R42~2C3t5(R4+ u2> 

6 ? rf     a<?d 

+ -^~ •   [t7(R3+Ul) +t8- (R4 + u2)]}  + 2X5Sa- |f 
>x. 

X3 = X1 + ^{(A2X3+t7X4)  • R33 + (t?\3+t8X4) • R43} 

R 
34 

^'VT^VS+W 
X    = 0 

b 

R C3t5x4(x4 " 2x3}  ' ^lh  " C2t3)(g + g) 

R4=-C3t5x3-C3t6(g + g) 

R31    =-  (C^+C^t^ ;   t1QAg+~ 

R41  =C2t4t10+£lt2Y  "VlX 

R32 =  " C3l6x4{x4 " 2x3) + C2fc4 ' 'lO 

R 42 C3t6x3 " C2VlO 

R33 = 2C3t5x4 

R43="2C3t5X3 

R34 =  -2C3t5(x4 - x3) 

2 2 2 
S^  +s2 - d 
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si =ei "Vz ' lzh "8(t) 

S, = e-, - £,t,  + £0t. - v  t 
L L        11        Z 3 o 

|^=2S1(£1t1-V3)-2S2U1t2+V4) 

H-- 2l2(Slt3 + S2t4) 

* 2 
6   = A2l8 " <7 

6 2 * ^ = 2C3'5'6 ' 

Similarly,   in the  swing portion,   we have the augmented performance 

criterion 

4 iz 
Min Js = , k{x5(t2) +^ (Xl(t2) - d.)2} + YA f-^ 

u i=l J    Z 

2   )(rlul 
f t  ) (rlul  + r2u2)dt (19) 

forO   <   cr,   < o- 00 and Yi   > Y? > > Yi,--¥ 0+ •     The dynamic 

equations are now 

x(t) = f(x,ujt) ;   x(tj) s. t.   ^ 1  = 0,   l//2 = 0 from deploy 

2 <20> 
x5(t) - SgntS") •   (Sa(x;t)r i   x^t^ 0. 

The presence of the  "soft" penalty is to ensure that x2(t) > 0 during 

the entire swing portion.     This requires that the initial and all iterative 

trajectories be feasible.    Similar to the deploy portion,   define a 

variational Hamiltonian as 
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HS(x,u,X;o-k, Vt)^i(rlUf + r2u^) + ^ + 2Xjfj(x'U;t) 

+ K5(t) •   Sgn(SS)      (SS(x;t))Z     . (21) 

Again,   the extremal condition implies 

4 
9f. 

(HS)u=0=»r1u1  ^^-^  = 0;  i = l,2     . (22) 

The equation set (17a) is thus obtained.    The influence equations and 

their appropriate boundary conditions are 

( ^        9f. 
-X.  =  ) X.   -—L+ 2\I.Sgn(SS)  •   S 

l     /_,   j    8x. 5  fo 

ass     Yk-6(2,i) 
"N 

i=i 

•X    = 0 

K.(t2)-2ak(x(t2)-d.) 

\5(t2)  = a k 

ax. 2 
1 x2(t) 

F        (23) 

J 
for i =  1, ,4 and 6 (2, i) = 1 if i = 2 and 0 otherwise.     The expressions 

for the X-equations are similar to those for the deploy portion except for 

the substitution of inequality for equality constraint expressions. 

Expressions related to the constraint are 

"as! 
9x, 

as: 
<    8x- 

-j^tj  + £2t     - d sin P(t) 

•£2t    + d sin P(t) (24) 

I - 0:   !§- = 0 ax. ax, 
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For both the deploy and swing portions,   we thus have a two-point 

boundary value problem (TPBVP)      (15,   17a,   18) and (20,22,23) 

for the respective unconstrained optimization problems. 

Solution of the stance portion differs from the other two stages. 

The leg in stance carries the body weight while the inertia of the 

trunk and forward motion of the swinging leg carry the entire body- 

forward.     The result is a  "sinusoidal" trajectory for the hip and the 

foot is almost stationary during the roll-over.     With prescribed 

motion for the hip and ankle,   motion of the thigh and shank are 

determined through these kinematic constraints.     The result is that 

the effective hip and knee moments can be found without the need of 

minimization of the performance criterion;   an algebraic method is 

sufficient for the solution in this portion.     The equality constraints 

on the ankle motion are 

S[s(x;t) =^(t) + £ltz + £2t4 + p(t)  - eQ = 0 

S^x^t) = vQ(t + tQ) + £]t1   - £2t3  - q(t) =  0 

for t?    ^  t ^   t,.     Differentiating once with respect to t,   we have 

(51) 

S[s(x;t) = g-(t) + p(t) +• znx3 + z12x4(t) = 0 

S2
rS(x;t) = VQ - q(t) -r z2l

x3<t) + z22X4(t) = ° 

(25) 

where 

/zn    ziz\ rVi+Va     "V3 

VZ21          Z22 /                           \ ^^2 + f2l4 " V^ 

The equation sets (5') and (25) form a decoupled system of four 

equations in the state variables (x, , , x   ) at each instant of time in 
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the stance interval.     Note that (5 )  is a nonlinear equation set in x, 

and x, while (25) is linear in x    and x    with the coefficients  z 
Z 5 4 ij 

(i, j =  1,2) as functions of x,   and x->.     Differentiating once more with 

respect to time, 

••rs \szJ 

/ '—•       •• 
/ g + P 

+ Z - L 

/      Z 
X3 

V(x4"x3)J 

(26) 

where 
It 

Vi 

t.\ 2 4 

" Vay 
Now,   x, and x. contain the actuating moments u.  and u? explicitly 

from the original dynamic equations 

/ xl  = x3 

x2 " x4 

x3 = - {A2(iT3 +Uj +Ma + (i1t1 "i2t3)Y +(I1t2+l2t4)X) + t7(R4 

+ u2-Ma+£2t3Y-i2t4X)} (27) 

x4 = -{t7(R3+Ul +Ma + (I1t1 -i2t3)Y +(jJ,t2+i2t4)X) + t8(R4+u2 

V -Ma+£2t3Y -£2t4X)} 

or 

R 

\R4 

+ A 

\U2 

A"1  --1 

'      A       "6 

I A, 

W 
A.,r    -t 

2 8       7 

(27') 

Combining (26) and (27'),   the moments can be expressed as: 
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A 
R (     * 

\   X3 "  (g + P)1 

A + AZ L 

VR4/ >4-x3) I 'q(t) 

V        (2s> 

/ 

M 
and =  Z L 

'     X3 

(x4 " x3) 

(T+P) 

\        q(t 

J 

(29) 

To generate the trajectories in the stance portion,   we proceed 

forward from t = t~ to t = t, in small positive increments,   A.    At each 

instant,   solve equation set (5') for x    and x? numerically (this is 

essentially finding the roots of nonlinear equations).     With the x.  and 

x? values determined,   the matrix Z is known and so the variables x., 

and x.  can be computed from (25).      Equation (28) then generates the 

hip and knee moment profiles. 
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E.    Numerical Simulation and Results 

1.     Parameters and Pertinent Data 

Having formulated an optimal programming theory for biped 

locomotion,   the next step is to perform a numerical simulation of the 

gait based on the proposed theory.     This is a crucial step because 

only the results can demonstrate the validity and relevance of the 

theory.    In general,   the walking pattern of each individual is a little 

different from that of another person because of the skeletal structure 

and physiological conditions.     However,   there are characteristic, 

qualitative features which are observable in the human gait for non- 

pathological cases.     The objective of the numerical experiment is to 

simulate these common features, 

a.     Physical Parameters. 

The values of the parameters used in the present computation 

are based on those used by Galiana and Milsum [33] in their EMG- 

experiment.     Typical values for the mass,   length and moment of 

inertia for the two segments of the lower extremity are listed as 

shown below.    It is noted that their values are derived from the 

commonly used  "percentage" values of Fisher and Dempster in 

Lissner [32].    Values of the composite parameters used in the mathe- 

matical model are also listed. 

Parameter Value Remarks 

Body Weight,   W 130 pounds 

Mass,  A 4. 05 slugs A    =  w/g 

Mass of Thigh,   Mj      0. 389 slugs 9- 6% of A 

Mass of Shank,   M?     0.2595 slugs 6. 4% of A  (includes mass of 
°       foot) 
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Parameter Value Remarks 
_2 

Moment of Inertia of Thigh,   I,     1.4x10     slugs 

-2 
Moment of Inertia of Shank,   L     1.882x10   * slugs    (shank-foot combination) 

Link Length of Thigh,   J^ 1. 3524282 ft. 

Link Length of Shank,   t^ 1.2618726 ft. 

Distance from Hip Joint 0. 586 ft. Dempster's average data 

to C. G.   of Thigh,   a 1 

Distance from Knee Joint 0. 547 ft. Dempster's data 

to C. G.   of Shank,  a ? 

(*) Length of Foot 0. 55 ft. Effective length in deploy 

0. 65 ft. Effective length in swing 

Composite Parameters in Simulation 

2 2 2 
A,  = I,   + mja .  + mzJ?1       =     0. 5993547648 slug-ft. 

A2 = !2 + m2a 2 =     0. 1414525055 slug-ft. 2 

Cl  = mla 1  + m2£l =     0. 564730024 slug-ft. 

C2 = m2a2 =     0. 1735743239 slug-ft. 2 

C3 = C2 •   il =     0. 2347468104 slug-ft. 2 

b.     Initial and Terminal Conditions. 

The starting values for the angular displacements and velocities 

(i. e. initial states) are derived from Beckett's [28] numerical experi- 

ment      These are 

(*) During deploy,   the foot rotates about its ball.     The distance between 
the ankle joint and center of rotation is shorter than the foot-length 
during swing when the toes are also taken into consideration. 
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x  (0) = 0. 11170107 radians (6. 4°) 

x2(0) = 0.2268928 radians (13°) 

x   (0) = x,(0) = 0.   radians/sec. 

x.(0) = x?(0) =  1. 68 radians/sec. 

At the end of the double-step,   the terminal values are chosen as 

x   (2. 0) = 0. 799 radians (46°) 

x2(2. 0) ~ 0. 052 radians (3°) 

x,(2. 0) =   0. 0 radians/sec. 

x.(2. 0)    :   0.0 radians/sec. 

The initial,   intermediate and terminal times for the three portions 

are set at t     -  0;   t,   -  0. 2 sec (deploy);   t2 =   1.0 sec (swing);   t, =  2. 0 

(stance).     Here,   we assume a  10% interval for deploy and restraint 

activity.   The swing (or support) occupies 40%.     Variation in the 

temporal patterns modify the numerical  results but not the methodology 

c.     Prescribed Trajectories. 

For the hip motion,   we have 

T(t) - v   (t + t   ) feet 
o o 

v    = 2. 275 ft. /sec. 
o 

t     = 0. 24698953 sec. 
o 

7(1) = eQ - JJ- sin ^- (t + |3 • tf) feet 

e    = 2. 7358172 feet 
o 

t, = 2.0 sec. 

(3 = 0. 525 
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e,   =    e    = 2. 7358172 feet 1 o 

e, =    - v t    = - 0. 399078 feet L o o 

To describe the almost stationary behavior of the foot in stance 

portion,   we rely on the experimental profiles by Bresler and Frankel 

[13],   and other experimenters [10, 12],   (Fig.   11).     For the present 

simulation,   simple curve fitting on the experimental data is used as 

our important objective is to illustrate our approach of study.    Better 

results could be obtained through interpolation or spline function 

approximation.    In the stance portion simulation,  the following prescribed 

trajectories are used for the ankle motion: 

q(t) = 2. 00+   0.35(l-e"6'5   );   T#t-1.0;1.0^t<2. 0. 

JO. 1 7 -f- 0. 1 5 Sgn ( n ) •   n2 1. 0< t< 1. 3 

p(t) ={0. 17 1. 3<t^ 1. 55 

0. l7 + 0.25(t-l. 0)+49. 1 • [0. 25(t-l)4- 0. 755(t-l)3 

+ 0.8 5(t-l)2 - 0. 421 (t-1)] 1. 55<t ^2. 0 

j^t-0.3    ;  Sgn(n) = {J J   %\ 

The particular choice of (p, q)-profiles is based on the form of the 

experimental curves as well as continuity at the matching points, 

d.     Pressure Transfer Curve. 

Equation (46) of mathematical modelling proposes a linear 

expression for the transfer characteristics of the pressure center in the 

stance portion.     The distance travelled from heel strike to rotation about 

the ball of the foot is equal to the effective foot length in deploy,   i.e. 

d = 0. 55'.    In approximately mid-stance,  the ankle joint is directly 

above the pressure center.     These two pieces of information give us 
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the required expression: 

x (t) = 2. 35 + 0. 9 (t - 1. 40)   feet 1. 0 ^ t <  2. 0 

2.     Numerical Computations. 

From the conditions of optimality,   a first order algorithm is 

employed for iterative,   numerical solution.     The algorithm is coded into 

Fortran IV programming language to run on the IBM 360/65 digital 

computer.     The program possesses the following features: 

a. The program has two options: 

(1) a one-dimensional minimization subroutine (QUADCL) used in 

conjunction with conjugate gradient or steepest descent algorithms. 

(2) a simple gradient procedure with a pre-specified improvement 

step-size. 

b. A fourth order Runge-Kutta method with fixed integration step- 

size is used for integrating the state and adjoint equations. In each 

integration step, the control histories u(t), state trajectories x(t) and 

ground reactions (X(t), Y(t)) are represented by their values at the end 

points. Presumably, such a "discretization" could have effect on the 

quality and convergence rate of the computation. 

c. To satisfy the state constraints,   the computation is done in 

series with increasing positive values of the weighing factor,   cr . 

d. The computation is carried out in single precision arithmetic. 

The numerical computation is involved because the dynamic 

equations involve five state variables and they are highly non-linear. 

More efficient algorithms  such as second order optimization methods 

are very complicated to program.    In the literature,   little has been 

reported on the computational experience involving problems of such 
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complexity.    Besides,   the primary purpose of the computation is to 

establish the relevance of the theory to biped locomotion and simulate 

the common features of gait.     These considerations prompt the use 

of the first order algorithm for an adequate,   approximate solution to 

the problem.     For each value of  cr ,   the computation involves a large 

number of iterations before a satisfactory solution is obtained.     The 

procedure with the QUADCL-search option involves more computing 

time per iteration in general than the simple fixed-step gradient 

procedure.     However,   these two options were used more or less 

alternatively to achieve improvement (cost reduction) because of the 

non-linearity of the problem.    An acceptable solution is obtained with 

3 2 
cr   =10    for the deploy portion and cr   =10    for the swing.      An 

interesting observation is that the swing portion with an inequality 

constraint is comparatively simpler to compute than an equality 

constraint as in the deploy portion. 

3.     Results and Discussion. 

Results of the simulation are summerized in the various graphs. 

To facilitate discussion,   comparison is made with the often-quoted 

experimental works of the Eberhart-Inman group at Berkeley [10, 12, 

13].    In general,   the results can be classified into three groups for 

discussion. 

a.    Angular Displacements and Related Results. 

Results pertaining to this part are depicted in the graphs No.   1 

to No.   7.     The state trajectories x, (t) and x?(t) together with their 

time derivatives portray the angular motion of the thigh and shank in 

the sagittal plane.    Note that the curves are  so plotted that they begin 
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at heel strike (i.e.   stance portion) for comparison purposes. 

The x?(t)-trajectory describes the motion of the shank with 

reference to the thigh.    At heel strike,   the knee joint is extended 

so that the x^tt) angle is at a small positive value.    During the brief 

restraining portion of stance,   the angle x? increases so that this flexing 

of the knee absorbs the impact of body weight passing on to the leg in 

stance.     The angle then decreases until deploy when it starts to increase 

rapidly.     The behavior that the knee is first flexed at heel strike and 

then flexed again during deploy is known as   "knee locking"  - a fact well 

documented in experimental studies.    In the swing portion,   x-,(t) reaches 

a peak value of roughly 80° and then decreases rapidly to almost zero 

in 0. 5 second.     The behavior resembles the ballistic action of a 

pendulum as illustrated clearly by the velocity profile x?(t) in graph 

No.   2.    In the pioneering works of Fischer,   it was conjectured that the 

action of the leg in swing is purely due to gravity,   but this was disputed 

by others later in connection with muscle activity studies.     From the 

present optimization standpoint,   it appears that the effective moments 

cooperate with gravity for lesser expenditure of work while still 

satisfying the state constraints.    From the graph    No.   17,   it is apparent 

that the constraint is well satisfied.    The state trajectories (i. e. 

angular displacements and velocities) are well matched for the multi- 

arc programming problem.     This is achieved by using the terminal 

conditions of one stage as the initial values for the following in actual 

computation.    However,   there exist small discontinuities for the 

acceleration and moment profiles at the stance/deploy and deploy/swing 

junctions.     The reason for the mismatch is primarily numerical as the 
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penalty technique used in the computation seldom satisfies the desired 

conditions exactly.     For the purpose of illustrating the theory,   the 

"numerical" discrepancy is not critical.     Similarly,   another interesting 

point is that the x2"acceleration curve (graph No.   3) exhibits a  "peaky" 

behavior in mid-stance.     The probable reason is that in our algebraic 

method of solution,   a piecewise polynomial representation is used for 

the ankle trajectories.    Another reason for the slight mis-match of 

acceleration profiles could be that the overall optimization problem is 

decomposed into a number of optimization problems over sub-intervals 

defined by the different phasic periods.     This  results in an overall 

sub-optimal solution unless the joins of the sub-intervals happen to 

occur at exactly optimal locations (which is unlikely since these are 

experimentally obtained data) and particular care is taken in the 

matching of the adjoint variables. 

The hip trajectory x, (t) portrays the  familiar pattern as  observed 

in experimental studies.    In the stance portion, the angle x, (t) decreases 

more or less uniformly while the hip joint is describing a sinusoidal 

path.     This characterizes the roll-over action of the upper part of the 

body (HAT-section) about the weight-bearing leg.    During deploy and 

subsequent swing,   the angle x, (t) shoots up to a maximum value and then 

coasts until heel strike.     The combined motion of the thigh and shank 

clears the toe sufficiently above the ground for swing motion.    As for 

the x  (t)-trajectories,  the x, (t)-trajectories are matched at the junction 

points except for the acceleration curve.     The reason is again numerical 

as discussed above. 

The angle a (t) (Fig.   12) describes the rotation of the foot about 
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its ball during deploy action.     Graph No.   4 shows the result of 

computation based on the equality constraint  relationship.     The angle 

a (t) has a monotonically increasing profile,   reaching a limiting value 

of about 1. 2 radians (— 68°) at the end of deploy.    A value of 70° was 

used for specifying the terminal deploy conditions.     The velocity and 

acceleration curves likewise show a monotonically increasing trend, 

but the acceleration trajectory appears to be more irregular.     This is 

because the  state constraint is satisfied approximately as shown in 

the residue error curve in graph No.   16. 

The angular displacements,   velocities and accelerations con- 

stitute the main results of the computation upon which related quantities 

can be calculated.     Graph No.   5 shows a phase plane diagram for the 

angular displacements x. (t) versus x?(t) during a double-step.     In the 

paper by Marie and Vukobratovic,   a special type of compass gait was 

considered in which the hip motion is stationary in the vertical direction 

and the foot is in continuous contact with the ground.     The  resulting 

realization of the gait pattern is that the thigh and shank angles are 

sinusoidal in a double-step.     This gives an elliptic phase plane plot 

with the points equally spaced.     The present results  simulate much more 

realistically the biped gait and the plot indicates deformation of the 

curve in the stance portion.     Note that the points are not uniformly 

spaced,   showing different rates of activity in the three portions. 

The horizontal and vertical displacements of the joints are 

plotted in graphs No.   6 and No.   7.    A double-step takes two seconds 

during which there is an overall horizontal displacement of 4. 55 feet. 

This gives a walking speed of about  1. 6 miles per hour,   a case of slow 
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level walking.     The hip moves at a uniform rate while the knee and 

ankle move through 4 feet during the swing portion.    Graph No.   7 

illustrates the vertical displacement of the joints.    A double sinusoid 

with 0. 9 inches in amplitude is used to simulate the hip motion.     In a 

more accurate description,   a Fourier series representation can be used 

to fit the experimental profile.    In fact,   the amplitude and phase of the 

various components have been studied to reveal the abnormal properties 

of the pathological gait.    In the normal case,   the double sinusoid is the 

principal component.    During stance,   the knee joint is almost stationary, 

so is the ankle trajectory as prescribed by the p(t)-profile.     The 

displacement at initial stance is prevailingly restraining action to 

absorb impact and the gradual increase towards deploy implies the 

transfer of the pressure center.     In subsequent deploy and swing motion, 

the vertical motion of the knee and ankle is comparatively larger.     Note 

that the overall vertical displacement is almost zero in a double-step. 

b.     Reaction Forces and Moments at the Joints. 

The foregoing section describes the kinematic behavior of the 

lower extremity in level walking.     To complete the description, 

dynamic quantities such as the forces and moments at the various joints 

must be determined.    It is only with the dynamic information that a 

realistic description of biped locomotion can be said to have been 

achieved.    In the weight bearing portions,   the foot is  subjected to very 

large ground reaction forces due to the weight and acceleration of the 

upper part of the body (HAT-section).     With these large forces 

appearing at the inputs to the dynamic equations,   it is not difficult to 

realize that they are the dominant quantities in determining the 
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actuating moments and reaction forces at the various joints.    In passing, 

we note that the numerical integration of differential equations having 

inputs of a large rapidly varying magnitude is not trivial. 

The present model assumes the ground reactions as known inputs 

to the dynamic equations.     This condition amounts to prescribing the 

behavior of the HAT-section and then investigating the walking patterns 

of the lower extremities using optimization theory.   It is certainly 

consistent with the concept of decomposing the human postural study into 

the stability problem of the HAT-section and the locomotion activity 

study of the two legs,   i. e.   control through a hierarchy structure.     In an 

analysis using a complete high order model,   the ground reactions are 

determined from the  resulting motion of the various  segments.     For the 

present study,   the experimental profiles by Inman [31] (normalized to 

body weight) are used as  shown in graphs No.   8 and No.   9.     Note that 

the vertical reaction has a double-peak behavior in the stance-deploy 

portions.     The first occurs after heel strike when the body rolls over 

the weight-bearing leg.     The second peak occurs in the deploy portion 

when the leg pushes the body up in preparation for the swing motion. 

In both graphs,   it is apparent that the reactions at the ankle,   knee and 

hip joints are close to the ground reactions.     The differences are due 

to the inertia and mass of the thigh and shank segments.     The ground 

forces are zero in the swing  portion. 

Results pertaining to the moment quantities are presented in 

the  graphs No.    1 0 to No.    12.     The ankle moment has the greatest 

values in the weight bearing portions.     The manner in which the ankle 

moment is calculated is approximate.    Based on a  "quasi-static" 
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assumption,   the inertial and gravitational effects of the foot are 

neglected as they are l%or less of the contribution of the ground 

reactions.    In addition,   a linear function is used to describe the 

transfer of pressure center in stance.    Despite the crudeness of the 

calculation,   the ankle moment agrees qualitatively well with the 

experimental results of Bresler and Frankel [13].     This is encouraging 

because the approximate calculation avoids the complexity of the high 

order model.     With better representation (e. g.   spline polynomial 

interpolation) of the prescribed trajectories,  better results are antici- 

pated.     The ankle moment and ground reaction contributions are the 

dominant quantities in determining the hip and knee moments in the 

stance and deploy portions (graphs No.   11 and No.   12).     This is very 

interesting because the inertial and gravitational terms are the most 

complicated to calculateand yet they are only second in importance in 

the moment calculation.     Thus,   the use of the simplified decoupled 

model together with kinematic constraints is not as crude as it may 

initially appear.    However,   neglecting the ankle moment and ground 

reactions makes a big difference  in the moment calculation.     This, 

then,   should explain the shortcomings of the papers by Beckett, 

Wallach,  Galiana and Vukobratovic   et al. 

The hip and knee moments are also plotted in graph No.   10. 

The greatest activity occurs during stance following heel strike and 

at deploy.    Activity in the swing portion is addressed to maintaining 

the leg above the ground (i.e.     to satisfy the state inequality constraints) 

while utilizing gravity as much as possible). 

The knee moment profile shows a typical pattern associated with 
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the   "knee-locking" behavior discussed earlier in a.     The sign 

convention for the moment is  such that,   when negative,   the forces 

pass behind the knee,   tending to flex it;   while a positive moment 

tends to hold the knee in a  "locked" position.     The present profile 

agrees fairly well with experiment [13].    At heel strike,   the leg is 

quickly stabilized,  then unlocked,   and once again locked for the 

deploy portion.    Bresler [13] pointed out that the knee-locking behavior 

allows one to move forward with a minimum raise of center of gravity, 

and therefore less expenditure of work. 

Like the ankle and knee moments,   the hip moment again agrees 

with the experimental pattern.     The negative moment following heel 

strike is  responsible for the roll-over of the body,   indicated by a mono- 

tonic decrease of the x1(t)-ankle.     Toward the deploy,   the hip angle 

starts to increase.     The greatest values at initial stance and deploy 

are opposite in sign.     Based on the idea of two basic configurations for 

the biped gait,   the two portions of "maximum" activity correspond to the 

"restraint/deploy" configuration (Fig.   6).     From the dynamic equation 

for the HAT-section,   the trunk of the body is subjected to the action of 

the hip moments.    But the interesting fact that the hip moments of the 

two legs are more or less of the same order of magnitude but opposite 

in sign leads to the concept of moment annihilation (i. e.   cancelling) of 

the hip moment's effect on the HAT-section.     This consequently requires 

far less  stabilizing moment effort for maintaining up-right posture.'    In 

the same vein,   the  "complementary"  * profiles for the hip reaction 

forces (graphs No.   8 and No.   9) create a couple action in the frontal 

f   i.e. ,   the profiles at deploy are reflections of those at initial stance. 
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plane,   facilitating the transfer of body weight from the deploying leg 

to the  restraining one following heel strike, 

c.     "Quality" of Numerical Computation. 

As stated earlier,   the important objective of the numerical 

experiment is to demonstrate the validity and relevance of the optimal 

programming approach to the study of biped locomotion      The require- 

ment of an adequate solution together with complexity of programming 

prompted us to use a first order algorithm and appropriate simplifica- 

tions.    Despite the simplicity of the program,   the results agree veil 

with the experimental results.     The graphs No.   16 and No.   17 show 

that the constraints are well satisfied for both the deploy and swing 

activities.    Graph No.   15 depicts the gradient histories for the two 

control moments in the respective portions.     In numerical computation, 

a commonly used stopping  rule is that the  integral of the  square of the 

gradients be less than some small positive number,   i. e. 

.<v 
_2 

2 

> <\« 
< € ; e small 

I 
= 1 

A    fiH 
g.  =   ——        for both swing and deploy 

l        du. 
l 

The condition that the integral approaches zero implies that the 

gradient histories become arbitrary close to zero.    From graph No. 

15,   the gradients are certainly not zero.     These are the best values 

obtained from the gradient algorithm as the gradient trajectories tend 

to fluctuate without evidence of further improvement in the value of 
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the performance criterion.     The greatest deviation from zero occurs 

at initial deploy,   when the ground reactions are at their maximum. 

Judging from the quality of our results,   the gradient histories are 

acceptable though not as small as one would have hoped.     From our 

computational experience,   the cost improvement may be slight in 

iterative calculations while the gradient histories may change by a 

wide margin.     Thus,   the numerical limitations plus the large non- 

linearity of the cost function account for the gradient fluctuation and 

difficulty in convergence.    In addition,   all our computations were 

carried out in single precision on the IBM 360/65 which offers 

between 6 and 7 significant decimal places.     Double precision could 

improve the convergence  significantly if round off errors are 

accumulating in the computations. 

d.     Equivalence  of Kinematic  and Dynamic Optimality. 

An important result of the numerical simulation is the concept 

of equivalence of kinematic and dynamic optimality.    In the absence 

of the ground reactions and ankle moment (i. e.   M     = 0, X = 0, Y = 0), 

the model is kinematic in that the moment contribution is entirely 

inertial and gravity.     In the graphs No.   13 and No.   14,   the p =  0 curves 

indicate the optimal moment profiles without any ground reaction 

forces.     This is the kinematic optimal solution.     The computation is 

next made for small increments of the factor (3 (0 '-•   p ^ 1) which 

represent different percentages of ground reactions acting on the foot 

in stance.     The graphs illustrate the results for the fractions P =  0. Z, 

0. 55,   0. 8 and 1. 0 (the actual dynamic case).     For each P,   the starting 

control moments are shown by the dotted lines obtained from a 
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previous (3* ((3*<j3) curve by adding corrections due to incremental 

ground reactions.     The optimal solutions are  represented by the solid 

lines.     These solutions,   which contain the effect of ground reactions, 

are the dynamic optimal solutions.    On the graphs,   the initial and 

optimal curves are very close together.     These curves often differ in 

the first decimal place in the computer output.     Thus,  to obtain the 

optimal moment profiles in the presence of ground reactions,   one may 

first compute the optimal solution with no force present and then add 

in the contribution from ground  reactions and ankle moments.     The 

kinematic solution (P =  0) is much easier to obtain than the dynamic 

case ((3=1) because of the difficulty in handling numerically the large 

forces.     The following table shows the (3-series of computations. 

Note that J increases as the fraction of ground reactions is increased. 

The higher values in the  "norm" of the gradient are probably due to 

severe non-linearity of the cost surface. 

,0.2 

H2dt 
u 

Cost,   J 

0 

0. 2 

0. 55 

0. 8 

1. 0 

Initial Final 

4. 65354 

5. 26159 >    5. 03576 

32. 8768    • >  26. 2485 

75.8608    *   63. 2441 

135. 271     >    99. 7697 

Initial 

1.22550x10 1 

9. 21051x10- 

6.26548x10 

3. 50728x10 

1.91357x10 

8 

Final 

1.19315x10 

->   1. 06064x10 

->   1.93208xl02 

->   1. 94933x10- 
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e. Feasible Initial and Terminal Regions. 

The starting and terminal values used in the simulation are 

chosen from experimental curves.    In actual locomotion,   these 

values arc seldom duplicated either due to parameter sensitivity or 

environmental changes.     Whatever the initial configuration may be, 

the deploy portion is almost characterized by the same circular arc 

equality constraint.     Thus,   it would appear to be very valuable to 

obtain the initial and terminal feasible regions for adaptation of control 

programs.    For our purposes,   the feasible initial region is defined as 

the set of values which satisfy the constraint and its time derivatives 

at the initial time,   1. e.   V x  s. t.        S   (x  : t - 0) = 0   :  S  (x  :t = 0) = 0: 
o o' o' 

•• d 
S   (x  , t= 0) = 0,   etc.    Results of the calculation are shown in graphs 

No.   18 to No.   21.     These are obtained by varying the x?(0) angle by 

small increments from the chosen value and computing the corresponding 

x,(0) through iteration.     The striking fact is that although the equation 

is highly non-linear,   the set of feasible values forms a straight line as 

shown in No.   18.     In No.   19,   the velocities are also linearly related. 

This is very interesting for parameter variation design considerations. 

For a given set of starting values,   the feasible terminal values are 

shown in No.   20 and No.   21. 

f. Design Considerations. 

From the foregoing discussions a.   through e.   on the simulation 

results,   useful ideas are evolved for practical design and quantitative 

study via the optimal programming approach.    Fig.   19 shows a 

schematic realization of a walking program by means of multi-arc 

programming.     The locomotion behavior for a double-step is first 
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decomposed into pertinent sub-modes or configurations.    Information 

on the feasible initial and terminal conditions,   temporal patterns, 

step-length and speed parameters forms a gross characterization. 

From this,   one can then generate the kinematic behavior of the gait - 

1. e.   displacement,   velocity and acceleration trajectories for the 

various angles.     The motion of the upper part of the body is likewise 

investigated.     The trunk motion together with the kinematic information 

specify the ground reactions.     This leads to the determination of 

effective moments,   reactions at  the joints and other dynamic quantities. 

To facilitate adaptation of the walking program,   feedback of information 

at various levels is indicated.     The linearity of the initial feasible 

region as discussed in e.   would certainly be of value in adaptive design. 

Such an optimal design procedure takes into account the dynamic and 

kinematic details of the gait.     This appears to be much more realistic 

than the algorithmic approach taken by McGhee,   Frank and Tomovic in 

their investigations [45-48]. 
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F.     Conclusions 

A new quantitative study of the human locomotion problem has 

been developed using the methods of optimal programming and control 

theory.     The multi-arc formulation is based on the qualitative 

properties of the biped gait.    Results of the numerical experiment 

indicate that the theory is highly relevant and agrees well with experi- 

mental results to-date.    Because of the flexibility of the method,   the 

theory can certainly be used to study various types of gait,   normal or 

pathological.     The quantitative method should find importance in 

prosthetic design.     Eventually,   it is hoped,   through systematic  studies 

like the one described,   locomotion by programmed stimulation will be 

realized. 
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